# NWMI Spring Workshop 2013 

Jim King, University of Washington

## Outline

8 The meaning(s) of "the same"?
8 Congruence, Similarity and other samenesses
\& Properties of Dilations
\& Dilations for solving Geometry Problems

8 Combining Dilations

Which are "the same"?
Which one (if any)

## does not belong?



Which are "the same"?


For which pairs of shapes can you find a rule that makes them "the same" (or not)?

## Sameness

8 There are many ways in math and in other parts of life to group things as being the same or not.

8 Examples outside of math?
© Examples in math? Geometry?

## Properties of sameness

8. Any A is the same as itself. [For any A, A "same" A.]
9. If $A$ is the same as, $B$, then $B$ is the same as A. [A "same" B implies B "same" A.]

3 If $A$ is the same as $B$ and $B$ is the same as $C$, then $A$ is the same as $C$. [A "same" B and B "same" C implies A "same" C.]

## Sameness in Geometry

8 In Euclidean Geometry, there are two kinds of sameness that we use most often and study the most: Congruence and Similarity

8 Some other samenesses include "equal area" or "equal length"
\& A variety of samenesses can be defined by means of transformations

## Congruence: Two Versions of the same Definition

8 Two figures are congruent if there is a rigid motion that moves one to coincide with the other. (Standard)

8 In the plane, two figures are congruent if there is a sequence of translations, rotations, and line reflections that moves one to coincide with the other. (Common Core)

## Other possible samenesses in the plane - which are OK?

8 Two figures are $X X X$ to each other if there is a translation that moves one to coincide with the other.
\& Two figures are YYY if there is a rotation that moves one to coincide with the other.
\& Two figures are ZZZ if there is a sequence of translations and rotations that moves one to coincide with the other.

Which figures are
XXX, YYY, ZZZ?

## Food for thought

E Which kinds of sameness might relate letters on a normal printed page?

8 If a kid thinks a rotated square is a "diamond" and not a square, is she thinking XXX and not just "wrong".

## Similarity

8 Two figures are similar if there is a scaling motion that moves one to coincide with the other. (Standard)

E In the plane, two figures are similar if there is a sequence of dilations, translations, rotations, and line reflections that moves one to coincide with the other. (Common Core)

## Dilation

\& A dilation with ratio $r$ and center $E$ maps a point $F$ to a point $F^{\prime}$ on line $E F$ so that $E F$ '/EF $=r$.

$$
\frac{E F^{\prime}}{E F}=0.50 \quad \frac{E G^{\prime}}{E G}=0.50
$$



## Dilation

8 All the other points are transformed by the same rule. All distances are scaled by the same ratio $r$. Angles are preserved.

$$
\frac{E F^{\prime}}{E F}=0.50 \quad \frac{E G^{\prime}}{E G}=0.50
$$



# Dilations with same center different ratios produce a family of similar figures 



## A graph paper example

8. Draw a triangle $A B C$ on your graph paper (suggest choosing points with integer coordinates)
\& Draw any segment $P Q$ parallel to $A B$ and of different length.
9. Draw lines AP and BQ and find the intersection point 0 . 0 will be the center of a dilation.
\& Draw a line through P parallel to $A B$ and a line through $Q$ parallel to $B C$. Let $R$ be the intersection of these two lines.

8 Now draw the line CR. It should pass through 0 . And it should be true that $O R / O C=O P / O A=00 / O B$

## Application 1

\& Given two circles of unequal radius, construct a dilation from one to the other.


## Application 2

E Given two triangles, ABC and UVW, construct a triangle similar to UVW inscribed in $A B C$.


## Solution 2

8 It is easy to construct a triangle similar to ABC circumscribed around UVW by constructing 3 parallel lines. Then dilate..


## Composing dilations

8 Suppose that a figure is dilated once and then the image is dilated again. Is there a single dilation that will take the first to this second image?
© Experiment: On your graph paper try dilating one segment $A B$ to a second CD and then dilate CD to EF. Can you dilate $A B$ to $E F$ in one step?

## Composing dilations

\& Suppose that a figure is dilated once and then the image is dilated again. Is there a single dilation that will take the first to this second image?
8. Experiment: On your graph paper try dilating one segment $A B$ to a second $C D$ and then dilate CD to EF. Can you dilate $A B$ to EF in one step?

8 Answer: Almost true. (What if the first scaling ratio is 2 and the next is $1 / 2$, with difference centers?)

## XXX or ???

\& Two figures in the plane are homothetic if there is a sequence of dilations that moves the first to coincide with the second.

8 Two figures in the plane are homothetic if either there is one dilation or one translation that moves the first to coincide with the second.

